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ABSTRACT 
The interaction of variable property convection and surface radiation in a differentially heated square cavity 
is considered. Effect of surface radiation on natural convection has been studied from the point of view of 
flow structure and isotherm patterns. Wherever possible, a comparative study has been invoked between 
the outcome of the present work and the constant property formulation. The finite element method 
has been used in the present work and associated formulation schemes have been described in detail. 
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NOMENCLATURE 

u, v fluid velocities, RC radiation-conduction parameter 
U, V non-dimensional fluid velocities, [= HσT4H/kr(TH - Tc)], 
H cavity height, TTD terminal temperature difference 
Uocharacteristic velocity [ = TH - T c ] , 

N number of part ic ipat ing surfaces; also 
TH, TC hot and cold wall temperature, shape function, 
Tr reference temperature NuH hot wall Nusselt number, 
g acceleration due to gravity, NuC cold wall Nusselt number, 
c specific heat, QH net heat transfer at hot wall, 
cr specific heat at reference temperature, CconH convective heat transfer at hot wall, 
c* non-dimensional specific heat [ = c/c r], Q r a d H radiative heat transfer a t ho t wall, 
k thermal conductivity, QC net heat transfer a t cold wall, 
kr thermal conductivi ty at reference tern- QconC convective heat transfer at cold wall, 

perature QradC radiative heat transfer at cold wall. 
k* non-dimensional thermal conductivity 

[=K/Kr], Greek symbols 
p fluid pressure, 
pr reference pressure, βr coefficient of volume expansion at 
p* non-dimensional pressure [ = p/pr], reference tempera ture , 
Pr reference Prand t l number [ = v r / a r ] , θ non-dimensional t empera ture 
Grr reference Grashoff number [ = ( T - Tr)/(TH - T C ) ] , 

[ = gβr(TH - T C )H 3 /v r
2 ] , p fluid density, 

J Radiosity, pr fluid density at reference temperature, 
J* non-dimensional radiosity [ = J/σT4H], p* non-dimensional fluid density [ = p/pr], 
Fij view-factor of ith surface from j th surface, Μ fluid viscosity, 
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μr fluid viscosity at reference temperature, αr thermal diffusivity at reference tempera-
μ* non-dimensional fluid viscosity ture, 

[=μ/μr], vr kinematic viscosity at reference tempera-
σ Stephan-Boltzman constant, ture. 
εi emissivity of ith surface, 

INTRODUCTION 

Natural convection is a matter of considerable research interest due to its direct relevance in a 
variety of applications ranging from growth of crystals, solar collector performance, fire and 
smoke spread in rooms to large-scale geophysical phenomena. With the advent of high speed 
digital computers, research interest was shifted towards numerical simulation of these situations; 
consequently, robust computer programs have been developed and tested with benchmark 
solution1 before they can be used for simulating real life situations. The benchmark solution is 
based on the assumptions of steady, two-dimensional, incompressible natural convection in a 
differentially heated square cavity. Since then, a considerable amount of research work has been 
reported and many of them have contributed greatly towards understanding the physics behind 
natural convection; however, some simplifications, such as universal adoption of Boussinesq 
approximation, have often eluded the scientific community from gaining further insight of the 
subject. It is generally known that this approximation is valid for small temperature differences. 
As thermal conditions became severe in some specialized application areas, it appeared that a 
more realistic approach will result if the effect of variable property was taken into account. 
Polezhaev2 was an early investigator in this field who reported the numerical solution of the full 
scale variable property problem over a Grashoff number range between 5 x 103 to 106. 
Macgregor and Emery3 employed Boussinesq approximation along with variable viscosity and 
thermal conductivity in their work which worked well for liquid. Subsequently, Leonardi and 
Reizes4,5 discussed at length the numerical scheme which they employed as also the effect of 
overheat ratio on the flow structure and isotherm patterns for the case of variable property 
convection in enclosures. Zhong et al.6 addressed several important problems, associated with 
variable property convection, such as the reference temperature issue and the limits of Boussinesq 
approximation. In their work, the reference property values are based on cold wall temperature. 
They also concluded that the Boussinesq approximation was generally valid when the overheat 
ratio was less than 0.1. The effect of the variable fluid properties on laminar free convection 
heat transfer of monoatomic gas, polyatomic gas, air and water vapour along an isothermal 
vertical flat plate has been reported by Shang and Wang7 , 8 . They noted that for polyatomic 
gases the classical Boussinesq approximation did not hold good even for small ranges of overheat 
ratio. Subsequent to these observations, it was soon realised that besides the variable property 
effect, the interaction of natural convection with radiation may have a significant role in some 
thermal systems where a large overall temperature difference exists. In many natural convection 
processes, the radiative heat transfer may affect the temperature field and consequently the flow 
field through absorption and emission processes within the fluid. This effect may be negligibly 
small if the fluid is dry air. However, the emission of radiation by the boundaries may have an 
important bearing on the boundary temperatures. Because of the coupling between the thermal 
and flow fields through buoyancy effects, the changes in boundary temperatures caused by 
radiative transfer may exercise a stronger influence than expected. However, in spite of its wide 
applications, the interaction analysis did not receive adequate attention. In fact Zhong et al.6 

very recently pointed out the necessity of solving the coupled heat transfer problems. However, 
a few case studies are found in which the combined heat transfer problem has been addressed9 - 1 2 . 
Lauriat1 3 considered convection in an insulated enclosure, including the effect of long wave 
radiation. Behnia et al.14 carried out a numerical investigation to study the effect of combined 
natural convection and radiation on the flow pattern and heat transfer in a rectangular, 
two-dimensional cavity containing a non-participating fluid. In their study, the terminal 
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temperature difference was 130°C and the Rayleigh number was varied between 104 to 3 x 105. 
In spite of a large overheat ratio, a constant property fluid with Boussinesq approximation was 
used to model the convection in their study. 

From the review of the above referred literature, it is recognised that a benchmark solution 
for compressible fluid flow in an enclosure does not exist. Moreover, a systematic investigation 
of the interaction of radiation with variable property convection has not been reported. The 
objective of the present work is, therefore, to carry out an extensive numerical investigation on 
such interactions under extreme thermal conditions. The differentially heated square cavity has 
been chosen as the physical domain. The Rayleigh number was varied between 103 to 4 x 107 

while the difference in hot and cold wall temperatures was of the order of 700°C. Finite element 
method has been employed as the numerical tool in the present work. 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

For a steady, two-dimensional, variable property Newtonian fluid, the conservation equations 
may be expressed as follows: 

(la) 

(lb) 

(1c) 

and 

(1d) 

In (1d), the effect of viscous dissipation and the work of compression has been neglected. 
Equations (la)-(ld) are non-dimensionalized with the help of the following reference quantities: 

Quantities with subscript r refer to the property values at the reference temperature. Throughout 
the present work, the cold wall temperature has been assumed to be the reference temperature. 
With the introduction of the above-mentioned non-dimensional quantities into (1a)-(1d), one 
obtains the following system of equations: 

(2a) 

(2b) 
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(2c) 

and 

(2d) 

It may be noted that the body force term in (2c) is based on the difference between the local 
fluid density and the density corresponding to fluid hydrostatic equilibrium condition. Finally, 
the boundary conditions are described in Figure 1. However, when surface radiation is to be 
considered the thermal boundary conditions at the insulated walls are modified as described 
below: As it has been assumed that the medium is not participating, the radiation phenomena 
will be limited to the boundary surfaces only. For pure convection cases, one substitutes, for 
adiabatic surfaces, —k(∂T/∂y) = 0. This needs to be slightly modified in the presence of surface 
radiation. The specification of boundary condition on the adiabatic surface is completed by 
equating the convective and radiative transfers on the plate as shown below: 

Introducing non-dimensional quantities, the above boundary condition can be transformed in 
the following form: 

(3) 

where RC [= HσT4H/kr(TH — TC)] is the radiation-conduction parameter and J* = J/σT4H. 
Equation (3) constitutes the gradient of the boundary condition for the energy equation (2d). 

Throughout the present work, the participating surfaces are assumed to be grey. 
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FINITE ELEMENT FORMULATION AND METHOD OF SOLUTION 

Standard Galerkin formulation has been employed throughout the present work. However, some 
simplifying assumptions had to be made during the course of discretization as illustrated below: 
For example, let us consider the discretization of (2d): 

It has been assumed that the properties remain constant element wise. This assumption permits 
the negligence of the spatial variation of the property values while computing the element stiffness 
matrix. So (2d) may be recast as: 

While computing the property values p*(e), c*(e), k*(e) or μ*(e) as the case may be, the temperature 
at the point (ξ = n = 0) is computed; subsequently, the property values are interpolated 
(corresponding to this temperature) from Reference 15. 

The rest of the discretization scheme is analogous to the conventional methods of treating 
incompressible flow in which the non-linearities are treated by the Newton-Raphson method 
and the resulting simultaneous equations are solved by Frontal solver. Detail of the method has 
been described elsewhere16. Convergence of the solution is assumed to be achieved when the 
largest residue is below a pre-assigned value, as low as 10-9 for pure convection cases. However, 
when radiation is present, this limit has to be raised to 10-8 due to slower convergence rate. 
During iterative process, (2a) to (2d) are solved first and the temperature distribution of the 
adiabatic surfaces are obtained. Subsequently, the following non-dimensional radiosity equations 
are solved: 

(4) 

where N denotes the number of discretized participating surfaces. For isothermal surfaces, Ti 
assumes the values of TH or TC depending on its location. When the ith side corresponds to an 
adiabatic surface, the average temperature of that side of the element is considered. 

Subsequent to the solution of (4), the Navier-Stokes and energy are solved once again; but 
this time (3) is considered as a boundary condition. The scheme is subsequently repeated. 
However, during two successive iterations the radiosity values are averaged. 

It has been observed that the number of iterations are much more in the presence of radiation. 
For example, when pure convection is present, only six to seven iterations are necessary when 
one moves from Rayleigh number 106 to 107; whereas around twenty iterations are required 
under the same condition when radiation is present. 

During the course of iteration the temperature of the isothermal walls (TH, TC) and emissivity 
has been supplied as the input. From the value of the cold wall temperature, the reference 
property values are obtained including the reference Prandtl number (Prr). For a specific Rayleigh 
number, the characteristic dimension of the cavity (H) may be calculated. From this value of 
the cavity dimension, the reference value of the velocity (Uo) can be calculated. So, for a specific 
case of Rayleigh number, the value of Uo and H change. The value of H is required in the 
computation of total energy transfer across isothermal walls. The convective heat transfer from 
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the hot wall can be calculated as: 

The radiative transfer from a segment i on the isothermal surface can be calculated as: 

RESULTS AND DISCUSSION 

Before a detail discussion on the combined mode heat transfer can be initiated, a brief discussion 
on grid independence study is necessary. In the present study, the mesh size is indicated by 
(M x N) in which M stands for the number of elements in X-direction and N for the same 
along Y-direction. The grid independence study starts with a relatively coarse-size mesh (14 x 14). 
It may be noted that an eight-noded isoparametric element has been employed throughout the 
present work for the discretization of the computational domain. The mesh, in subsequent studies 
have been continuously refined up to a size of (30 x 14). The number of elements in the 
Y-direction had to be limited to 14, in order to restrain the size of the front width. Secondly, 
it has been observed that the thermal gradients are predominantly along the X-direction at 
either of the active walls. These lead to the fact that it is more demanding to increase the number 
of elements in X-direction than Y-direction. The grid independence study starts with the effect 
of variable property convection and the detailed results are indicated in Tables la and 2a. While 
the value of the cold wall temperature was kept constant at 300 K, the hot wall temperature 
was assigned values 500 K and 1000 K. As is evident in both these Tables, there is a considerable 
difference in the heat balances of hot and cold walls at lower mesh sizes and this difference 
significantly narrows down as the mesh size is increased. This disagreement of energy balances 
at the active walls is typical of variable property convection only but, surprisingly, it has not 

Table 1a Grid independence study for convection (TH = 500 K, TC = 300 K, Ra = 107, Pr, = 0.71) 

Grid NuH 

14 x 14 18.09 
18 x 14 17.76 
22 x 14 17.60 
26 x 14 17.50 
30 x 14 17.45 

Nuc 

16.43 
16.67 
16.88 
17.05 
17.14 

QH 
(W) 

94.96 
93.28 
92.36 
91.83 
91.57 

Qc 
(W) 

86.25 
87.50 
88.61 
89.46 
89.96 

Table 1b Grid independence study for convection-radiation interaction (TH- 500 K, TC = 300 K, Ra = 107, Pr, = 0.71, 
ε=0.1) 

Grid 

14 x 14 
18 x 14 
22 x 14 
26 x 14 
30 x 14 

QconH 
(W) 

88.30 
87.22 
86.76 
86.61 
86.67 

QradH 
(W) 

15.22 
15.30 
15.35 
15.36 
15.36 

QH 
(W) 

103.52 
102.52 
102.11 
101.97 
102.03 

QconC 
(W) 

83.40 
84.57 
85.61 
86.52 
87.16 

QradC 
(W) 

12.47 
12.40 
12.34 
12.33 
12.34 

Qc 
(W) 

95.87 
96.97 
97.95 
98.85 
99.50 
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Table 2a Grid independence study for convection (TH= 1000 K, TC = 300 K, Ra = 107, Prr = 0.71) 

Grid 

14 x 14 
18 x 14 
22 x 14 
26 x 14 
30 x 14 
34 x 14 

NuH 

19.29 
19.01 
18.83 
18.74 
18.70 
18.65 

NuC 

15.41 
16.25 
16.93 
17.46 
17.79 
17.96 

QH 
(W) 

354.32 
349.11 
345.90 
344.23 
343.46 
342.47 

Qc 
(W) 

283.06 
298.40 
311.00 
320.69 
326.74 
329.88 

Table 2b Grid independence study for convection-radiation interaction (TH = 1000 K, TC = 300 K, Ra = 107, 
Pr, = 0.71, s = 0.1) 

Grid 

14 x 14 
18 x 14 
22 x 14 

QconH 
(W) 

272.13 
272.22 
273.82 

QradH 
(W) 

189.05 
189.70 
190.26 

QH 
(W) 

461.18 
461.81 
464.08 

(W) 

297.58 
314.12 
328.66 

QradC 
(W) 

143.38 
142.75 
142.22 

Qc 
(W) 

440.96 
456.87 
470.88 

been reported by the workers in this field. Only Leonardi and Reizes4 reported similar 
observations. Also it is noted that the total heat transfer across the hot wall always exceeded 
the total heat transfer across the cold wall. This may be presumably due to the fact that the 
effect of variable property fluid (air, for the present case) is to inhibit convection near the hot 
wall since the viscosity of a gas increases with temperature; this results in a non-symmetric 
vertical velocity profile with stronger convection near the cold plate only. However, the thermal 
conductivity of gas also increases with temperature and this increase of gas conductivity 
dominates over the increase of gas viscosity. Consequently, the heat flux at hot wall increases. 
On the other hand, if a coarse mesh is adopted for computation of heat flux at the cold wall, 
which is associated with a strong convective flow field, an under-prediction of the cold wall heat 
flux value will result. Hence, it is expected that with refinement of grid sizes, the difference 
between the energy balances at the hot and cold wall should decrease. Table la confirms this 
observation. In Table 2a the results of the same experiment have been reported except the fact 
that the hot wall temperature has been exactly doubled. The study has been terminated at a 
mesh size of (34 x 14) and it is seen that still further refinement of mesh is necessary for obtaining 
even a fair agreement between the energy transfers at the active walls. 

In the second phase of the grid independence study, the effect of both variable property 
convection and surface radiation has been considered. Tables 1b and 2b show the detail of such 
a study. The energy balance along an active wall, in the present case, includes the net radiative 
transfer at the active walls in addition to the contribution from the convection. The salient 
features are as follows: 

(1) the radiative contribution at either of the active walls do not vary much within the frame 
work of the present study. This may be attributed to the fact that since the fluid is not participating, 
the mesh refinement is not expected to exercise any significant influence upon it excepting the 
fact that there will be very small changes in the view factor calculations and this is reflected in 
the radiative contributions in terms of very small variations. 

(2) In Table 1a, the terminal temperature difference is only 200 K; consequently the radiative 
contribution is only about 15% of its convective counterpart. As a result, convective heat transfer 
at the hot wall always exceeded that at the cold wall—a typical characteristic of pure variable 
property convection. In Table 2b, as the terminal temperature difference is increased to 700 K, 
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radiative contribution matches the order of convective contribution and it is noted that the 
convective transfer at the hot wall, for any mesh, is less than that at the cold wall, the reason 
for which will be described subsequently. 

So it seems that better results can be obtained with a refined mesh for a pure convection 
study while relatively coarse mesh seems to be adequate for analysing the combined mode of 
transport. However, in the remaining part of this section, only the results, as obtained from a 
(30 x 14) mesh will be cited. 

Effect of variable property natural convection 
The effect of variable property natural convection on flow and temperature fields and 

comparisons is made with the incompressible flow situations, as and when possible. 
Figure 2 describes the near wall vertical velocity distributions at Y = 0.5, for a range of 

Rayleigh numbers. It is observed that as the terminal temperature difference is gradually 
increased, the magnitude of the maximum vertical velocity increases; also the position of the 
maximum vertical velocity gradually moves away from the hot wall into the core. In the vicinity 
of the hot wall the vertical velocities, resulting from the constant property flow, are more than 
the vertical velocities from the compressible flow situations. This is expected since in the near 
wall region, the effect of gas viscosity is more pronounced. However, at some distance away 
from the hot wall, the effect of viscosity is less strongly felt and peaky velocity profiles are 
obtained. These observations are in good agreement with the observations of Shang and Wang8, 
who have carried out an analytical investigation of variable property fluid flow along a vertical 
isothermal wall immersed in an infinite medium. On the contrary, Zhong et al.6 concluded that 
the vertical velocity components (at Y = 0.5) for a variable property fluid are always smaller 
than those resulting from Boussinesq approximation. This observation by 0Zhong et al.6 leads 
to the conclusion that as the terminal temperature difference is gradually increased, the convective 
motion gets suppressed throughout the cavity and in the limit, if radiation is not considered, 
heat transfer will be governed by conduction. This is rather difficult to accept since higher 
terminal temperature differences are associated with larger values of Grashoff number and 
consequently a stronger convection should result. Figure 2 also describes the near wall 
temperature distributions at Y = 0.5 for some selected Rayleigh numbers. Because of the effect 
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of gas viscosity, the effect of convection is somewhat suppressed with the result that as TH is 
gradually increased over TC, the temperature distributions become progressively flatter with 
respect to its counterpart with constant property fluid, i.e., higher the terminal temperature 
difference, the smaller will be the value of the temperature gradient (i.e. ∂θ/∂X). However, so 
far as convective heat transfer from the hot wall is concerned, the value of thermal conductivity 
at the hot wall increases with increase of TH so that even though the temperature gradient is 
small, the convective heat transfer increases over constant property calculations. Figure 3 
describes some typical distributions of temperature gradients along the hot wall. As expected, 
maximum heat transfer occurs at the bottom of the hot wall. 

Effect of interaction between convection and surface radiation 
This section deals with the flow structure and isotherm patterns for the combined mode of 

heat transfer. Figures 4-9 show the vector plot for velocities as well as temperature distributions 
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within the cavity in presence of convection and convection-radiation, for some selected Rayleigh 
numbers. Throughout the study, the value of ε has been assumed to be 0.1. Several important 
changes in flow pattern are apparent from these vector plots. For example, a pure convection 
case, based on variable property formulation, is characterized by the presence of multi-cells 
while the effect of radiation is to reduce their size or altogether eliminate them. Secondly, while 
there is a tendency towards the formation of separation cells at top and bottom horizontal plates 
for RaH ≥ 107, such trends are completely absent in the presence of radiation. However, as the 
terminal temperature difference are decreased, the effect of radiation decreases and these trends 
reappear. The isotherm patterns, described in Figures 7-9, indicate that the effect of radiation is 
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to reduce the stratification in the core. Also it is seen that unlike the pure convection case, the 
insulated wall condition at the top and bottom are achieved through a balance of convective 
heat transfer and the radiative heat transfer at these walls; consequently, some typical isotherms 
are inclined to these walls. However, in all cases, where radiation is present, the bottom plate 
is being convectively cooled while the upper plate is convectively heated. Moreover, radiation 
weakens the convective field near the hot wall and this is readily evident by the spreading of 
isotherms in the vicinity of the hot wall. In general the isotherm patterns in these Figures agree 
well with the numerical investigations reported in Reference 14. Figure 10 shows the temperature 
distributions along the upper and lower plates respectively. In this Figure, the sharp changes 
in temperature profiles are associated with the crowding of isotherms at the active walls. Also 
it is seen that the average plate temperature, in the presence of surface radiation, decreases below 
that of pure convection case for the upper plate while the reverse situation occurs for the lower 
plate; consequently, as the terminal temperature difference is increased gradually, the average 
temperature of the two plates approach each other. Moreover, the average temperature for the 
upper plate is affected to much lesser extent than the average temperature of the lower plate as 
the terminal temperature difference is increased. 

Like the pure variable property convection case, it will be of interest to examine the mid-plane 
vertical velocity and temperature distribution when the radiation is present in addition to variable 
property convection. In Figure 11, these distribution patterns bear some similarity with Figure 
2 of particular interest is the mid-plane temperature distributions which show that at all the 
Rayleigh numbers considered in the present work, the core becomes intensively heated as terminal 
temperature difference is increased. 
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Effect of interaction between variable property conduction and surface radiation 
The isotherm patterns for the combined mode of variable property conduction and surface 

radiation with different surface emissivities are described. As can be seen from the system 
equations (2a)-(2d), it is not possible to shed the effect of natural convection completely; as a 
consequence the field behaviour for surface radiation and conduction is approached by making 
the Rayleigh number very small (Ra = 0.1). These sort of situations arise in practice when the 
cavity has very small dimension or when the experiment is carried out under microcavity 
condition. Figures 12 and 13 illustrate the situations obtained by setting Ra = 0.1. In Figure 12, 
in which the surface emissivity was 0.1, radiation is expected to exert little influence. However, 
the effect of temperature dependent conductivity is clearly demonstrated. The isotherms are 
almost vertical indicating that the heat transfer mode is conduction dominated. However, the 
Figure reveals that the isotherms are not equispaced, which is a characteristic of constant thermal 
conductivity based conduction. As can be seen the isotherms near the hot wall are widely spaced 
while there is a packing of isotherms near the cold wall. This particular characteristic is explained 
by the fact that near the hot wall thermal conductivity is much higher. On the contrary, thermal 
conductivity near the cold wall is low necessitating the closer packing of isotherms near the cold 
wall. The effect of surface radiation on this conductive field is illustrated in Figure 13. As can 
be seen the isotherms near the hot wall show distinct departure from the conduction based 
results. The isotherms are curved in the vicinity of both the insulated walls while the central 
portion of the isotherms continued to retain their original character. It is natural to expect that 
the portions of the insulated walls near the hot wall assume major role in the radiative exchange 
process. The right hand side of (3), which governs the shape of the isotherms near the horizontal 
walls, then act as a perturbation over the conduction based pattern of isotherms. This explains 
the near wall curvature of the isotherms. This trend, however, is absent with the isotherms 
placed farthest from the hot wall since the portions of horizontal walls near the cold plate do 
not assume any significant role in radiation. 

CONCLUSION 

The present work deals with the finite element simulation of the interaction between variable 
property natural convection and surface radiation in a differentially heated square cavity. It has 
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been observed that the effect of radiation is to suppress the formation of multi-cells within the 
core, as well as the separation cells at the top and bottom plates. The core is intensively heated 
in presence of radiation and the thermal stratification of the core, which is a unique feature of 
both variable property and constant property convections, is lost. Moreover, isotherms are 
spread considerably apart near the hot wall when radiation is present. So far as variable property 
convection is concerned, the symmetry of the mid-plane vertical velocity and temperature profiles 
have been lost and the core is effectively reduced in size. From the numerical viewpoint, the 
presence of radiation considerably delays the convergence. 
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